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a b s t r a c t

An iterative, semi-analytical solution is derived for deformation of an elliptical (in cross-section) power-
law viscous inclusion within an infinite linear viscous matrix undergoing a general 2D incompressible
flow. Finite-element numerical models are used to extend the analysis to that of a power-law viscous
matrix. The general behaviour of a deformable elliptical inclusion is not dramatically changed by power-
law viscous rheology, but the effective viscosity is now a function of the orientation and axial ratio of the
inclusion. Overall, the effect is similar to a markedly increased viscosity ratio for a stronger inclusion, or
a decreased ratio for a weaker inclusion, when compared to the linear viscous case. As a result, rather low
reference state viscosity ratios between inclusion and matrix (e.g., 2 to 3, determined at the same
effective strain rate for both materials) can produce marked differences in behaviour for the range of
power-law stress exponents established experimentally for many minerals and rocks (typically 3e6).
Even for very high strain within a shear zone (g > 100), initially nearly circular inclusions (R < 2) can
maintain low axial ratios (R < 2e3) and widely variable orientations. These inclusions deform internally
and are not rigid, but continue to rotate or oscillate without strong elongation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Rocks are never homogeneous and clasts, particles and grains
are ubiquitous over a wide scale range, frommicrons to kilometres.
These inclusions are generally irregular in shape andmay be closely
packed. However, in some important natural examples, such as
isolated porphyroclasts, pebbles in matrix-supported conglomer-
ates, and widely dispersed oolites in some limestones, particles
may be sufficiently separated that they do not interact during
deformation and can be well approximated as an isolated rigid or
viscous inclusion embedded in an infinite isotropic viscous matrix
(e.g., Ildefonse et al., 1992b; Treagus and Treagus, 2002; Mandal
et al., 2003). Several previous studies considering 2D flow have
shown that, at least for effectively rigid particles, the enclosing
ellipse provides a good approximation to the rotational behaviour
of more complex inclusion shapes (Bretherton, 1962; Willis, 1977;
Ferguson, 1979; Fernandez et al., 1983; Arbaret et al., 2001;
Schmid, 2005) and the results for elliptical inclusions are there-
fore more generally applicable. For deformable particles, the actual
inclusion shape may have a more significant effect (Treagus and
Lan, 2003) and shape is also important for particles that are
All rights reserved.
weakly bonded to the matrix, where parallelepiped forms promote
the development of stable orientations during shearing
(Pennacchioni et al., 2001; Mancktelow et al., 2002).

Analytical solutions have been derived for the behaviour of (1)
rigid particles in an isotropic linear viscous matrix (Jeffery, 1922;
Bretherton, 1962; Ghosh and Ramberg, 1976); (2) isotropic linear
viscous deformable inclusions in an isotropic linear viscous matrix
(Bilby et al., 1975; Howard and Brierley, 1976; Bilby and
Kolbuszewski, 1977; Schmid and Podladchikov, 2003; Mulchrone
and Walsh, 2006), and (3) rigid inclusions (Mandal et al., 2005a)
or, more generally, linear viscous, rigid and inviscid inclusions
(Fletcher, 2009) in an anisotropic linear viscous matrix. However,
the crystal-plastic flow of most rocks and minerals is more realisti-
cally described by a power-law rheology (e.g., Kohlstedt et al.,1995).

Many numerical and analogue modelling studies have consid-
ered power-law behaviour of the inclusion and/or matrix when
investigating, for example, the rotation and interaction of rigid
particles (Ferguson, 1979; Ildefonse and Mancktelow, 1993), the
deformationof strong, but not rigid, isolated clasts (e.g., calcite clasts
in quartz mylonites; Mancktelow and Pennacchioni, 2010a), the
development of mantled porphyroclasts (Passchier and Sokoutis,
1993) and their use as indicators of the stress sensitivity in power-
law viscous materials (Passchier et al., 1993), the folding of
a power-law layer offinite length,modelled as an elliptical inclusion
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Fig. 1. 2D geometry of an elliptical inclusion, which is cylindrical in the third
dimension, with the cylinder axis parallel to the vorticity vector of the 2D flow in the
matrix. Axes x10-x20 are the external fixed reference frame used to describe the flow in
the matrix, axes x1-x2 are parallel to the semi-axes of the inclusion a and b, with axial
ratio of the inclusion R ¼ a/b.
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(Schmid et al., 2004), the nucleation and propagation of shear zones
initiated on isolated weaker circular inclusions (Grujic and
Mancktelow, 1998; Mancktelow, 2002, 2006), and the more
general behaviour of two-phase power-lawviscousmixtures (Jessell
et al., 2009). To my knowledge, the only analytical investigation
specifically considering the behaviour of a power-law viscous
inclusion is that of Gilormini and Montheillet (1986), which was
further developed and compared to numerical finite-element
models in Gilormini and Germain (1987). Schmid et al. (2004) also
considered a power-law viscous elliptical inclusion embedded in
a linear viscous matrix as a model for folding of an isolated layer of
finite length. However, in these three publications, only the
simplified case of pure shear with inclusion axes parallel to the
principal axes was considered, which does not provide information
on the rotational behaviour of the inclusion.

In this study, the linear viscous analytical solution of Bilby and
Kolbuszewski (1977) is extended to the case of a power-law viscous
inclusion forall inclusionorientations and for2D incompressible slow
flows covering the range frompure to simple shear. Numerical finite-
element models are used to additionally investigate the effects of
power-law viscous rheology for both inclusion and matrix. General
characteristics of inclusion behaviour that are independent of
rheology are summarized and the results for power-law viscous
rheology of the inclusion and/or matrix compared and contrasted to
linear viscous behaviour. MATLAB scripts for calculating the results
presented here are provided in the Supplementary material.

2. Previous work

2.1. Overview

Amathematical treatment of an isolated rigid spherical inclusion
in a linear viscous matrix was first developed by Einstein (1906,
1911). This was extended by Jeffery (1922) to particles of ellip-
soidal shape, with a complete solution presented for an ellipsoid of
revolution (i.e., an axisymmetric shape), as also considered by
Bretherton (1962). The more general case of a triaxial ellipsoid
requires numerical integration (e.g., Gierszewski and Chaffey, 1978;
Hinch and Leal, 1979; Freeman, 1985; Jiang, 2007a). Ghosh and
Ramberg (1976) combined the results of Jeffery (1922) and
Muskhelishvili (1953) to provide analytical solutions for the rota-
tional behaviour of a rigid elliptical particle in a general 2D incom-
pressible flow ranging from pure to simple shear. They then
compared these results to analogue model experiments in simple
shear. Details of the rotational behaviour of rigid particles and
possible factors that could hinder this rotation have been the subject
of many other studies, reflecting the importance of the subject for
understanding deformed natural rocks (e.g., Gay, 1968; Ghosh and
Sengupta, 1973; Ferguson, 1979; Fernandez et al., 1983; Freeman,
1985; Passchier and Simpson, 1986; Passchier, 1987; Ildefonse and
Fernandez, 1988; Ildefonse et al., 1992a, b; Ildefonse and
Mancktelow, 1993; Passchier and Sokoutis, 1993; Je�zek, 1994;
Je�zek et al., 1994, 1996; Bjørnerud and Zhang, 1995; Marques and
Cobbold, 1995; ten Brink and Passchier, 1995; Arbaret et al., 1996,
2001; Pennacchioni et al., 2000; Marques and Coelho, 2001;
Mancktelow et al., 2002; Piazolo et al., 2002; Piazolo and
Passchier, 2002; ten Grotenhuis et al., 2002; Ceriani et al., 2003;
Mandal et al., 2003, 2005b, c; Fletcher, 2004; Marques and Bose,
2004; Marques, 2005; Marques et al., 2005a, b, c; Jiang, 2007a; Fay
et al., 2008; Jessell et al., 2009; Johnson et al., 2009).

Solutions for an isolated deformable ellipsoidal inclusion in an
infinite matrix were initially established for linear elasticity
(Robinson, 1951; Muskhelishvili, 1953; Eshelby, 1957, 1959). In
deriving his solution, Eshelby (1957) proposed that the stress (and
strain) within an isolated ellipsoidal inclusion in an infinite linear
elastic matrix is homogeneous. This has become known as the
“Eshelby conjecture” and been demonstrated to hold true regard-
less of the rheology of the inclusion if the matrix is linear elastic or
linear viscous (e.g. Bilby and Kolbuszewski, 1977; Schmid and
Podladchikov, 2003). Several studies have subsequently trans-
formed the original elastic solutions to the directly corresponding
case of an isotropic linear viscous deformable inclusion in an
isotropic linear viscous matrix (e.g., Bilby et al., 1975; Howard and
Brierley, 1976; Bilby and Kolbuszewski, 1977; Schmid and
Podladchikov, 2003; Mulchrone and Walsh, 2006), and Jiang
(2007b, in press) developed interactive routines to allow easy
calculation and visualization of the 3D results.
2.2. Results for linear viscous rheology and 2D flow

Asummaryof the full 3Dsolution for linearviscous rheology, based
largely on the work of Eshelby (1957, 1959) and Bilby et al. (1975), is
provided in Jiang (2007b).Hereonly the simpler 2Dcase is considered,
mainly following Bilby and Kolbuszewski (1977). The basic 2D
geometry of an isolated inclusion with an elliptical cross-section is
presented in Fig. 1, with the x10-x20 axes defined as the external refer-
ence frame and the x1-x2 axes fixed to the semi-axes of the elliptical
inclusion. The angle j is measured (counter-clockwise positive)
between the external x10 axis and the long axis of the inclusionparallel
tox1.R isusedhere todenote theaxial ratioof the inclusion (Fig.1) (e.g.,
Ramsay, 1967; Dunnet, 1969; Ghosh and Ramberg, 1976; Lisle, 1985;
Pennacchioni et al., 2001; Mandal et al., 2005a), whereas Bilby and
Kolbuszewski (1977) used s for the axial ratio and R for the viscosity
ratio of inclusion to matrix (here referred to as d).

Consider the velocity gradient tensor L for the flow in thematrix
at infinity, with components

Li0j0 ¼ vvi0

vxj0
(1)

in terms of a mixture of pure shear with rate _e and simple shear
with rate _g so that

L ¼
�
_e _g
0 � _e

�
¼ DþW (2)

where D is the symmetric rate of deformation tensor

D ¼
�
_e1010 _e1020

_e1020 _e2020

�
¼
"
_e _g

2
_g
2 � _e

#
¼
�
q s
s �q

�
(3)

with components equivalent to
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_ei0j0 ¼ 1
2

vvi0

vx 0
þ vvj0

vx 0
(4)
 
j i

!

and W is the anti-symmetric vorticity tensor

W¼
�

0 u1020

�u1020 0

�
¼
�

0 _g
2

� _g
2 0

�
¼
�

0 p
�p 0

�
¼
�
0 s
�s 0

�
(5)

with components equivalent to

ui0j0 ¼ 1
2

 
vvi0

vxj0
� vvj0

vxi0

!
: (6)

In Eq.’s (3) and (5) above, the shorthand terms q, s and p
correspond to the terminology of Bilby and Kolbuszewski (1977),

with _e1010 ¼ �_e2020 ¼ q ¼ _e and u1020 ¼ s ¼ p ¼ _g

2
. Implicit in the

definitions of Eq.’s (3) and (4) is that _g is positive for dextral shear
and q is positive for extension parallel to x10 (transpression in the
case of mixed shear).

The eigenvectors ofD, with coordinates relative to the x10-x20 axis

system of
�
1;�1

s
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

q
þ q
��

and
�
1;

1
s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

q
� q
��

,

represent the principal directions of the rate of stretch, commonly
called the “instantaneous stretching axes” ISA (e.g., Passchier and

Trouw, 2005). The corresponding eigenvalues, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ s2
p

, are the stretching rates in these principal directions. Using

the trigonometric identity that tan2q ¼ 2tanq
1� tan2q

, it is readily

established that the angle q between the ISA and x10 is given by

tan2q ¼ s
q
¼ _g

2 _e
¼ 1

2sr
; (7)

where, following the definition of Ghosh and Ramberg (1976),

sr ¼ _e
_g
¼ q

2s
: (8)

The eigenvectors of L represent the “flow apophyses” (Ramberg,
1975a, b), with flow converging toward the extending eigenvector
(parallel to the x10 axis for transpression), and diverging away from
the shortening eigenvector (parallel to the x10 axis for transtension).
The angle a between the two eigenvectors is given by

a ¼ �tan�1ð2srÞ (9)

(Bobyarchick, 1986). The angle a decreases from 90� for pure shear
(sr ¼ N) to 0� for simple shear (sr ¼ 0), in which case the single
(non-stretching) eigenvector is parallel to the shear direction x10
(Bobyarchick, 1986; Fig. 2).

The “effective strain rate” in the matrix, _eE, is defined as

_eE ¼
ffiffiffiffiffiffiffi
IID

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
trace ðDDÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

_ei0j0 _ei0j0

r
; (10)

(e.g., Eq. 4.20 in Ranalli, 1995), where IID is the second invariant of
tensor D for incompressible flow. For the case considered here, the
effective strain rate for the far-field flow in the matrix is

_eE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_e21010 þ _e21020

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

q
; (11)

which corresponds to the magnitude of the principal stretching
rates given by the eigenvalues of the rate of deformation tensor D,
as already established above.

The definition of the kinematic vorticity number Wk (Truesdell,
1953; Means et al., 1980; Jiang, 2010; and many others) is
Wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�trace ðWWÞ
trace ðDDÞ

s
¼ jwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 trace ðDDÞp ¼ jwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ei0j0 _ei0j0

q
¼ jwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�
_e21 þ _e22 þ _e23

�r ¼ jwj
2_eE

(12)

where jwj is the magnitude of the vorticity vector, w ¼ curl v, v is
the velocity field, and _e1; _e2; _e3 are the principal stretching rates
parallel to the ISA. Wk lies between 0 (pure shear) and 1 (simple
shear) for the range of 2D incompressible flows considered here.
For the 2D flow in the matrix, w ¼ �2u1020k (Means et al., 1980),
where k is the unit vector pointing out of the ij plane, containing
the x10-x20 and x1-x2 axes (Fig. 1). From Eq. (12) above, it follows that
Wk in the matrix is

Wk ¼ ju1020 j
_eE

¼ jsjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�q
s

�2
þ1

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sr þ 1

p (13)

or, alternatively,

sr ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
W2

k

� 1

s
: (14)

From Eq. (13), the relation of the magnitudes of s and q to the
kinematic vorticity number in the matrix Wk, for a given effective
strain rate _eE, is

jsj ¼ _eEWk (15)

jqj ¼ _eE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

k

q
: (16)

For simplicity, _eE in the matrix is always normalized to be 1, but
the results can readily be scaled to any natural strain rate. For
a given Wk in the matrix, Eq.’s (15) and (16) can be used to deter-
mine the magnitudes of q and s and, from Eq. (5), p ¼ s. Sign
conventions are as introduced above: positive s for dextral shear,
positive q for stretch parallel to x10 (i.e., transpression).

For flow within the inclusion, the velocity gradient matrix
Linclusion, rate of deformation tensor Dinclusion, and vorticity tensor
Winclusion are related by.

Linclusion ¼ Dinclusion þWinclusion

¼
"
_einclusion11 _einclusion12
_einclusion12 �_einclusion11

#
þ
"

0 uinclusion
12

�uinclusion
12 0

#
:

(17)

With R as the axial ratio (a/b, Fig. 1) and d the viscosity ratio of
inclusion to matrix, the solutions of Bilby and Kolbuszewski (1977)
for the components of Eq. (17) are

_einclusion11 ¼ _R=ð2RÞ ¼ ðq cosð2jÞ þ s sinð2jÞÞðRþ 1Þ2=J (18)

_einclusion12 ¼ ðs cosð2jÞ � q sinð2jÞÞðRþ 1Þ2=K (19)

uinclusion
12 ¼ _einclusion12

�
R2 þ 1

�.�
R2 � 1

�
; (20)

with

J ¼ R2 þ 2dRþ 1 (21)

K ¼ dR2 þ 2Rþ d: (22)



a b

c d

Fig. 2. Normalized rotation ratedj=deE and stretching ratedR=deE of an inclusion (wheredeE ¼ _eEdt for effective strain rate _eE in thematrix), for linear viscous rheologyof both inclusion
andmatrix and viscosity ratio d¼ 10. Fig. 2a and c are for pure shear (Wk¼ 0), inwhich case the orientation for maximum rotation rate is j1 ¼�45� , that for minimum rotation rate is
j2¼45� , and the two inflectionpoints in the rotation rate curvesarej3¼�90� andj4¼0�;j3 andj4 also correspond to theorientations of the ISAand thus theorientations ofminimum
and maximum rate of elongation of the inclusion. Fig. 2b and d are for dextral transpression with Wk ¼ 0.8. In this case j1 ¼ �18.4� , j2 ¼ 71.6� , j3 ¼ �63.4� and j4 ¼ 26.6� .
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The rate of rotation of the inclusion axis x1 relative to the
external axis x10 is

_j ¼ ðs cosð2jÞ � q sinð2jÞÞðRþ 1ÞL=ðR� 1Þ � p (23)

with

L ¼ 1� 2dR=K: (24)

The value �p ð¼ �u1020 Þ on the right-hand-side (RHS) of Eq.
(23) is one half the magnitude of the vorticity vector, which in turn
is equal to the rotation rate of lines parallel to the ISA of the far-field
matrix flow or the average rotation rate of all lines in this back-
ground flow (counter-clockwise positive) (Means et al., 1980). The
rest of the expression on the RHS of Eq. (23) is the rate of rotation of
the inclusion axis x1 relative to lines instantaneously parallel to the
ISA in the matrix (equivalent to _jþ p).

Eq.’s (18), (19), and (23) can be rearranged so that the scalar
results _einclusion11 , _einclusion12 , and _jþ p are obtained through the
multiplication of two vectors: one vector with components q and s
fromthe rate of deformation tensorDdescribing the imposedmatrix
deformationandonedefining theparticle orientation in termsof the
direction cosines (as double angles) (cf. Jiang, in press).

_einclusion11

ðRþ 1Þ2=J
¼ ½ q s �

�
cosð2jÞ
sinð2jÞ

�
(25)
_einclusion12 ¼ ½ s �q �
�
cosð2jÞ � (26)
ðRþ 1Þ2=K sinð2jÞ

_jþ p
ðRþ 1ÞL=ðR� 1Þ ¼ ½ s �q �

�
cosð2jÞ
sinð2jÞ

�
(27)

This form of the equations demonstrates that, when correctly
scaled relative to the axial ratio R and the viscosity ratio d (included
in the scalar terms J, K, and L above), the instantaneous behaviour of
all inclusions is described by simple expressions that are dependent
only on D and the inclusion orientation. The scalar factors on the
left-hand-side (LHS) of Eq.’s (25) and (27) both approach 1 as R
approaches infinity, regardless of the viscosity ratio d (provided, in
the case of Eq. (25), that it remains finite, i.e. the inclusion is not
rigid), whereas for Eq. (26), the scalar factor approaches d as R
approaches infinity. It follows that the RHS’s of Eq.’s (25e27) simply
describe the behaviour of a passive line (R ¼ N, d ¼ 1), with the
scaling on the LHS’s transforming this into a description of the
complete range of inclusion behaviour. In fact, the scalar factors in
Eq.’s (25e27) are always 1 for d ¼ 1, regardless of R, which returns
the intuitive result that the behaviour of directions in a passive
inclusion is the same as for a passive line. For a rigid inclusion
(d¼N), the scalar factor in the denominator of the LHS of Eq. (27) is
(R þ 1)(R � 1)/(R2 þ 1) and, for R ¼ 1, the rotation rate for all
directions is �p. In all other cases (d s 1 or N), the rotation rate _j
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for R ¼ 1 corresponds to a singularity, because the long axis of
a circular inclusion is indeterminate.

The RHS’s of the three equations will have zero, maximum and
minimum values for the same orientations of the long axis of the
inclusion regardless of R and d, and directly correspond to the case
of a passive line. From Eq. (25), the rate of stretch _einclusion11 (and thus
_R) for all inclusions is zero when

tanð2jÞ ¼ �q
s

¼ �2sr; (28)

corresponding to the directions of no instantaneous stretch of
a passive line for the particular flow. The maximum and minimum
values of the RHS are �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

p
(¼ � _eE; Eq. (11)) and are attained

when

tanð2jÞ ¼ s
q
¼ 1

2sr
; (29)

corresponding to the orientation of the ISA. Use of the standard
trigonometric identity that tanðqþ p

2
Þ ¼ �cotq immediately

establishes from Eq.’s (28) and (29) that the two perpendicular
directions of no instantaneous stretch are at 45� to the two
perpendicular ISA.

For both Eq.’s (26) and (27), the zero value of the RHS is attained
when

tanð2jÞ ¼ s
q
¼ 1

2sr
; (30)

again corresponding to the orientation of the ISA. By definition, the
shear strain rate parallel to the ISA is zero, both for a passive line
and, by inference from Eq. (26), for all possible elliptical inclusions
in this orientation. From Eq. (27), _j ¼ �p for all inclusions with
axes parallel to the ISA, which establishes that in this orientation all
inclusions rotate at a rate determined by the vorticity of the

imposed 2D flow, i.e. �p ¼ �u1020 ¼ � _g

2
. The maximum and

minimum values of the RHS of Eq.’s (26) and (27) are again

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2

p
ð¼ � _eEÞ and are attained when

tanð2jÞ ¼ �q
s

¼ �2sr; (31)

corresponding to the directions of no instantaneous stretch.
In summary, the RHS of Eq. (25) and the RHS common to both Eq.

(26) and (27) describe two sinusoidal curves of amplitude _eE that are
45� out of phase with regard to j, the curves for Eq. (25) passing
through maximum and minimum at the ISA, where the curves for
Eq.’s (26) and (27) pass through zero. Plots of the stretching rate _R
and rotation rate _j for all inclusions, regardless of their R and
d values, will be identical if their orientation is plotted relative to the
ISA and the ordinate is scaled according to the LHS of Eq.’s (25e27).

Relative to the axes x1-x2, the orientations of the ISA within the
inclusion are the eigenvectors of Dinclusion and the eigenvalues give
the corresponding principal stretching rates. The effective strain
rate within the inclusion is

_einclusionE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
_einclusion11

�2þ�_einclusion12

�2r
; (32)

and the kinematic vorticity number within the inclusion, relative to
the inclusion axes x1-x2, is

W inclusion
k ¼ juinclusion

12 j
_einclusionE

: (33)

From Eq. (20) it is clear that uinclusion
12 / N as R / 1 and

therefore alsoW inclusion
k /N as R/ 1. The vorticity vector for flow

within the inclusion relative to the external axes x10-x20 is
winclusion
1020 ¼ 2

�
� uinclusion

12 þ _j
�
k (34)

and from Eq. (8) of Bilby and Kolbuszewski (1977)

�uinclusion
12 þ _j ¼ ðs cosð2jÞ � q sinð2jÞÞðd� 1Þ

�
R2 � 1

�
=K � p

(35)

or, on rearranging,

�uinclusion
12 þ _jþ p�

d� 1
��

R2 � 1
�
=K

¼ ½ s �q �
�
cosð2jÞ
sinð2jÞ

�
: (36)

If required, the kinematic vorticity number within the inclusion
relative to the external axes x10-x20 can be determined from Eq.’s
(34) and (35) using the definition in Eq. (12),

W inclusion
k0 ¼ jwinclusion

1020 j
2_einclusionE

: (37)

However, as pointed out by Means et al. (1980), it is the value of
the vorticity and kinematic vorticity number in Eq. (33) that is more
relevant for fabric development within the inclusion.

From Eq. (18) for _R and Eq. (23) for _j, the progressive change,
with increasing matrix strain, in the shape and orientation of an
inclusion with a specific initial axial ratio and orientation repre-
sents an initial value problem for ordinary differential equations
(ODE’s), which can be solved by standard numerical methods.
Plots presented here were generated using routines in MATLAB
and the relevant scripts are available in the supplementary
material.
3. General principles of inclusion behaviour

Before considering the extension to power-law rheology, it is
useful to first summarize general principles that control the
behaviour of a 2D inclusion with an elliptical cross-section
embedded in an infinite matrix undergoing a general incom-
pressible viscous 2D flow. Most of these observations are in fact
independent of the rheology of the inclusion.

(1) For an inclusion with a specific axial ratio R, the pattern of the
perturbation velocity field (e.g., Passchier et al., 2005), and
therefore the stress, pressure, and strain rate, is only deter-
mined by the orientation of the inclusion relative to the far-
field ISA in the matrix, although the magnitudes are deter-
mined by the (effective) viscosity ratio. The vorticity of the
imposed flow has no influence on the distribution of stress,
pressure and strain rate relative to the inclusion axes. Linclusion

only depends on the orientation of the inclusion relative to the
ISA and therefore plots of _R ¼ dR/dt (or dR=deE; e.g., Fig. 2c and
d), W inclusion

k , and _einclusionE are identical, regardless of Wk in the
matrix, when plotted for angles relative to the ISA. As devel-
oped below, this is also the case for the effective viscosity ratio
in power-law viscous materials, which depends on _einclusionE .
This general observation is implicit in the fact that the
components of the vorticity tensor in the matrix flow
ðp ¼ u1020 Þ do not appear in Eq.’s (18e20) for the components
of Linclusion. The rotation rate of the long axis of the inclusion
_j ¼ dj/dt (or dj=deE) also does not vary relative to axes
instantaneously parallel to the ISA (first term on the RHS of Eq.
(23)). However, it does vary relative to the external axes x10-x20,
with all curves, regardless of R, being shifted in magnitude



Fig. 3. R-j plot for linear viscous rheology, viscosity ratio d ¼ 10, and dextral trans-
pression with Wk ¼ 0.8 (i.e., directly comparable to Fig. 2b and d). There are two
stationary points (red crosses) with values of R ¼ 1.43 and R ¼ 2.22 and corresponding
values for _einclusionE of 0.177 and 0.163. Both lie on the line of mirror symmetry, which is
the orientation j1 ¼ �18.4� of maximum rotation rate and zero stretching rate (cf.
Fig. 2b and d). The maximum rotation rate for the two stationary points must be
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by�p (0 in Fig. 2a,�0.8 in Fig. 2b), as is clear from the presence
of this second constant term on the RHS of Eq. (23).

(2) Switching ISA, or the equivalent operations of rotating an
inclusion 90� relative to the ISA or inverting the axial ratio R to
1/R, inverts the sign of the perturbation velocity, the stress (and
pressure) and strain rate, but the pattern and absolute
magnitudes remain unchanged.

(3) The orientations of maximum and minimum rate of rotation of
an isolated inclusion are perpendicular to one another and the
orientations corresponding to inflection points in the rotation
rate curves bisect the angle between them (Fig. 2a and b). The
orientations of maximum and minimum rate of rotation
themselves bisect the angles between the eigenvectors of flow.
All these orientations depend only on the background flow and
not on the axial ratio of the particle, the viscosity ratio or the
rheology. They therefore also correspond to the behaviour of
a passive line in a homogeneous material (see the discussion
after Eq. (27)). Following Ghosh and Ramberg (1976), but
allowing for the difference in definition of angles, the orien-
tations j1 for the maximum rate, j2 for the minimum rotation
rate, and j3;4 for the two inflection points are:

j1 ¼ �1
2
tan�1ð2srÞ (38)
exactly zero (cf. R ¼ 2 in Fig. 2b, which is very close to the value R ¼ 2.22 for one of the
stationary points). For linear viscous rheology and Wk ¼ 0.8, a single stationary point
occurs for d ¼ 8.4362; for lesser values, there are no stationary points, for larger values
there are always two points (see script “Eq_23_stationary_points” in the
supplementary material). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
j2 ¼ j1 þ 90� (39)

j3;4 ¼ j2 � 45� (40)

These results are identical to those derived directly from the
solutions of Bilby and Kolbuszewski (1977) for a viscous ellip-
tical inclusion (see Eq.’s 28e31 and related discussion above).
Note that the terms “maximum and minimum rotation rates”
also consider the sign. For example in a general 2D flow with
a dextral shear component, the maximum (positive and
counter-clockwise) rotation rate will be antithetic to the sense
of shear and smaller in absolute magnitude than the minimum
(negative and clockwise) rotation rate, which is synthetic to the
shear sense (Fig. 2b).

(4) The pattern of the perturbation velocity field (and stress,
pressure, strain rate) is symmetric relative to the inclusion axes
for orientations j1;2;3;4. For these orientations, the ISA inside
the inclusion are parallel to the ISA in the far-field flow. For
orientations j3;4 (inflection points in rotation rate), the ISA are
also parallel to the axes of the inclusion andW inclusion

k ¼ 0 (i.e.,
coaxial deformation). For orientations j1;2 (maximum and
minimum rotation rates), the ISA are at 45� to the inclusion
axes,W inclusion

k /N as R/ 1 butW inclusion
k / 1 (simple shear)

for increasing R and is already close to unity for R >w5. For all
other orientations, there is a refraction of axes, so that for
a more viscous inclusion (d > 1), the principal axes inside the
inclusion are refracted to make an angle closer to 90� to the
inclusion interface (Strömgård, 1973; Treagus, 1973;
Mancktelow, 1993). This effect becomes more pronounced
with increasing R and viscosity ratio d and is reflected in
W inclusion

k , which, for larger R and d, is small for most orienta-
tions (“spinning coaxial deformation”, cf. Fig. 4c of Lister and
Williams, 1983) and only rapidly approaches 1 (simple shear)
for a narrow range of orientations around j1;2.

(5) All inclusions rotate at the same rate at the inflection points
(orientations j3;4) regardless of their axial ratio, effective
viscosity ratio or rheology (Fig. 2a and b). This rotation rate has
a magnitude equal to�p ¼ �u1020 (0 in Fig. 2a,�0.8 in Fig. 2b),
which is also equal to the average rotation rate of all lines in the
matrix flow or the average rotation rate of any two
perpendicular lines. It follows that it must also be the constant
rate of rotation of any circular rigid particle. This behaviour is
readily explained when considering that this is also the
orientation of the ISA. Any general deformation can be
considered in terms of an instantaneous stretch related to the
ISA and a rigid body rotation, which can be described by the
rotation of the two lines parallel to the ISA which remain
instantaneously perpendicular. When the axes of the inclusion
are parallel to the ISA, the elongation of the inclusion is coaxial
(at a rate determined by the effective viscosity ratio, the
rheology and the current axial ratio) and the axes of the
inclusion therefore remain fixed to the same material lines
(which remain perpendicular). These lines rotate according to
the imposed matrix vorticity, irrespective of the effective
viscosity ratio, rheology or the current axial ratio. It follows
that the rotation rate of all inclusions is the same when the
axes are oriented parallel to the ISA, which corresponds to the
inflection point in the rotation rate curves.

(6) For orientations of maximum and minimum rotation rate j1;2,
the stretching rate _R ¼ dR/dt (or dR=deE) of an inclusion is
always zero (Fig. 2). In these orientations, the angle between
the ISA and the inclusion long axis is 45� (both in the inclusion
and in thematrix far-field flow) and the inclusion axes thereby
correspond to directions of no instantaneous stretch. For
orientations with the long axis parallel to j3;4, the ISA coincide
with the axes of the inclusion, the internal deformationwithin
the inclusion is coaxial pure shear and the rate of change in the
axial ratio is either a maximum (long axis parallel to stretching
axis) or a minimum (long axis parallel to shortening axis).

(7) In R-j plots (Fig. 3) showing trajectories with time (or
increasing matrix strain) of axial ratio R (ordinate, log scale)
and long axis orientation j (abscissa), as introduced by Bilby
and Kolbuszewski (1977; Figs. 2e5) and subsequently
referred to as “phase portraits” (Spence and Wilmott, 1988),
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“phase diagrams” (Mulchrone and Walsh, 2006), or “phase-
space plots” (Fletcher, 2009), there is reflection symmetry
about vertical lines corresponding to the orientations of
maximum andminimum rotation rate (j1 ¼�18.4�, j2 ¼ 71.6�

in Fig. 3 with Wk ¼ 0.8).
(8) Passive lines rotate away fromtheshorteningeigenvector toward

the extending eigenvector. With increasing axial ratio R, all
inclusions rotate like a passive marker line, regardless of
rheology. It follows that, with increasing R, trajectories in R-j
space diverge away from the shortening eigenvector (�36.9� in
Fig. 3) and toward the extending eigenvector (0� for trans-
pression, Fig. 3).

(9) A deformable inclusion with circular cross-section (R ¼ 1) has
no long axis (j is undefined) but is instantaneously shortened
and stretched parallel to the ISA. In R-j space, the corre-
sponding trajectory therefore approaches the R ¼ 1 limit at j
angles corresponding to the ISA (i.e., j3;4 ¼�63.4� and 26.6� in
Fig. 3). All other trajectories are asymptotic to the abscissa at
R ¼ 1, with the sense in which they approach this asymptote
changing to either side of the critical trajectory trending
toward points (j3, R ¼ 1) and (j4, R ¼ 1).

(10) The trajectory plots in R-j space are point symmetric around
(j3, R ¼ 1) and (j4, R ¼ 1). Plots extended to the space R < 1
(i.e. where j is now the angle to the short axis b, Fig. 1), as in
Bilby and Kolbuszewski (1977; Figs. 2e5), can be readily
generated from plots with R � 1 (e.g., Fig. 3) by making use of
this symmetry.

(11) Laminar viscous flow is reversible. Reversing time reverses
both the simple and pure shear components. The example of
Fig. 3 for dextral transpressionwithWk¼ 0.8 becomes the case
of sinistral transtensionwith the sameWk by simply reversing
the sense of the arrows on the trajectories. In physical space,
reversing the sense of shear without changing the pure shear
component is equivalent to a reflection about either the x10 or
x20 axes (Fig. 1), which is the same as changing the sign of j,
which is in turn the same as a reflection about the vertical
j ¼ 0 line in an R-j plot. It follows that the full range of
behaviour corresponding to a specific value of Wk can be
inferred from a single plot such as Fig. 3.

(12) For deformable linear viscous inclusions in a linear viscous
matrix, there are several regimes of behaviour. As discussed
by Bilby and Kolbuszewski (1977), the trajectory plots in R-j
space for pure shear matrix flow are similar for all viscosity
ratios d of inclusion to matrix; inclusions continuously elon-
gate and their long axes asymptotically approach the prin-
cipal stretching axis of the matrix flow with time (op. cit.,
Fig. 2). However, for simple shear there are three regimes: (a)
for d < 2, all inclusions elongate indefinitely and asymptoti-
cally approach the shear plane (op. cit., Fig. 3); (b) for
2 < d < w3.40 there are two fields of behaviour separated by
the critical trajectory passing through �45� ði:e:;j3;4Þ at
R ¼ 1; within this bounding trajectory inclusions oscillate
around the shear plane, on it and outside it they continuously
elongate as their long axes approach the shear plane
asymptotically (op. cit., Fig. 4); (c) for d > w3.40, the shape of
all inclusions changes periodically; those within the critical
trajectory oscillate in orientation, those outside continuously
rotate; an inclusion on the critical trajectory oscillates in
orientation � when circular, it stretches parallel to the ISA,
then rotates synthetically and stretches to reach a maximum
R when parallel to the shear plane, continues to rotate with
decreasing R until R ¼ 1 as it again reaches the orientation of
the ISA, and the cycle repeats (op. cit., Fig. 5). A further
regime, (d), which is covered by the general discussion in
Bilby and Kolbuszewski (1977) but not explicitly presented in
an R-j plot, occurs for mixed flow between simple and pure
shear. An example is given in Fig. 3 for a viscosity ratio d ¼ 10
and kinematic vorticity number Wk ¼ 0.8. In this case, there
are two stationary points, one surrounded by closed trajec-
tories (with R ¼ 1.43) and one at a saddle point (R ¼ 2.22).

(13) Stationary or invariant points in the R-j plots are those for
which the axial ratio and orientation of the inclusion do not
change. However, it is important to note that there is still
internal deformation within the inclusion e in Fig. 3, for the
case with R ¼ 1.43 the effective strain rate in the inclusion is
0.177, for R ¼ 2.22 it is 0.163 (for a matrix flow with an
effective strain rate of 1). The inclusion axes remain of
constant length because they correspond to directions of no
instantaneous stretch (see above). As also discussed above,
inclusions for which R is instantaneously unchanging always
have an orientation j1;2. However, for stationary points the
rotation rate of the long axis must also be zero, and this is
only possible if the rotation rate at j1 (for dextral shear) or
j2 (for sinistral shear) has an antithetic sense for some
values of R (in Fig. 3, for R < 1.43 or R > 2.22 at j1
¼ �18.4�). R values of the stationary points can be found as
the roots of Eq. (49) of Bilby and Kolbuszewski (1977), or
numerically (or graphically) as the zero intercepts of the
curve of Eq. (23) for rotation rate versus axial ratio R, for the
given angle j1 (or j2).

(14) As R increases, the effective strain rate in the inclusion for
orientations j3;4 (with inclusion axes parallel to the ISA)
approaches that of the matrix e in this case, the limit is
constant strain rate in inclusion and matrix and different
magnitudes of stress reflecting the viscosity ratio. For inclu-
sions with axes parallel to j1;2, which are directions of no
stretch but maximum shear stress, the stress will be same in
inclusion and matrix but the strain rate will be different, again
directly reflecting the viscosity ratio.
4. Power-law viscous rheology

Provided the matrix is linear viscous, the stress and strain rate
within an ellipsoidal inclusion is homogeneous. Roscoe (1967),
Goddard and Miller (1967), Bilby and Kolbuszewski (1977), and
Schmid and Podladchikov (2003) all noted that analytical solutions
for a linear viscous inclusion could therefore be extended to the
case of an inclusion with more general mechanical properties, but
explicit examples were not developed. Gilormini and Montheillet
(1986), Gilormini and Germain (1987) and Schmid et al. (2004)
did consider power-law viscous rheology, but only for the specific
case of pure shear where the axes of the inclusion were parallel to
the principal axes. Here the 2D solution of Bilby and Kolbuszewski
(1977) is extended to the case of a power-law viscous inclusion. It
should be emphasized that the rheology of the inclusion does not
affect the overall solution. If an instantaneous effective viscosity
ratio is determined, this value can be substituted back into the
general solutions of Bilby and Kolbuszewski (1977), Schmid and
Podladchikov (2003), or Jiang (2007b, in press) to immediately
determine the full velocity field, strain rate, stress, and pressure in
both the inclusion andmatrix. The progressive change in shape and
orientation of the inclusion can also be readily determined, using
standard ODE methods, as in the linear case considered above.

For a power-law viscous material, the effective viscosity is
given by

meff ¼ m0

 
_eE

_e0E

!1
n �1

(41)
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where m0 is the reference viscosity at the reference strain rate _e0E,
the effective strain rate is defined in Eq. (10), and n is the power-law
stress exponent (e.g., Schmalholz et al., 2008; Deubelbeiss et al.,
2010; Mancktelow and Pennacchioni, 2010b). It follows that the
effective viscosity ratio deff ¼ mi/mm, where mi is the effective
viscosity in the inclusion and mm is the effective viscosity in the
matrix, is given by

deff ¼ d0

 
_einclusionE

_e0E

!1
ni
� 1 

_e0E
_eE

! 1
nm

� 1
; (42)

where d0 ¼ m0i
m0m

is the effective viscosity ratio at the reference strain

rate (i.e., _einclusionE ¼ _eE ¼ _e0E). Here, thematrix is always considered
linear viscous, so that nm ¼ 1 and Eq. (42) reduces to

deff ¼ d0

 
_einclusionE

_e0E

!1
ni
� 1

: (43)

The effective strain rate within the inclusion is still given by Eq.’s
(18), (19) and (32) above but now, for a power-law viscous inclu-
sion, using modified versions of Eq.’s (21) and (22):

J ¼ R2 þ 2deffRþ 1: (44)

K ¼ deffR
2 þ 2Rþ deff : (45)

Eq. (24) also changes to

L ¼ 1� 2deffR=K: (46)

For simplicity and without loss of generality, the effective strain
rate in thematrix is scaled to unity and the parameter d0 defined for
this reference unit strain rate (i.e., for _einclusionE ¼ _eE ¼ _e0E ¼ 1). This
value d0 is used as an initial value for deff in Eq.’s (44) and (45) to
calculate the strain rate components in the inclusionwith Eq.’s (18)
and (19). A newvalue of _einclusionE is calculated fromEq. (32), which is
thenused to calculate a newvalue of deffwith Eq. (43). This process is
iterated until deff converges (rapidly) to a predefined tolerance. The
MATLAB script is available in the supplementary material.

If the matrix also has a power-law viscous rheology, this itera-
tive, semi-analytical approach is no longer appropriate. Numerical
finite-element modelling (FEM) can be used, again employing an
iterative approach, where, for each iteration, the current calculated
effective strain rate at the integration points is used to determine an
effective viscosity using Eq. (41). This approach is summarized, for
example, in the appendix of Schmalholz et al. (2008). Comparing
FEM results for a power-law viscous inclusion in a linear viscous
matrix with the semi-analytical results provides an internal check
on the numerical models.
Fig. 4. Variation of the effective viscosity ratio deff with orientation j and axial ratio R
for dextral simple shear, viscosity ratio at reference state d0 ¼ 2, linear viscous matrix
and stress exponent in the power-law viscous inclusion of a) ni ¼ 3 and b) ni ¼ 6. For
a circular inclusion, deff ¼ 3.37 in a) and 4.99 in b).
5. Results

Themajor difference for power-law viscous inclusions is that the
effective viscosity ratio is a function of the strain rate within the
inclusion and therefore varies with axial ratio and orientation. Fig. 4
shows two examples calculated for dextral simple shear (Wk ¼ 1),
with d0 ¼ 2, R ¼ 1, 2, 3, 4, 6, 8, and ni ¼ 3 (Fig. 4a) or ni ¼ 6 (Fig. 4b).
These plots are mirror symmetric about the orientations of
maximum and minimum rotation rates (j1;2 ¼ 0�, �90�), as
expected from general point (7) above. The variation in effective
viscosity ratio increases with axial ratio and the highest effective
viscosity ratio occurs for j1;2 (at 0�, �90� for simple shear), which
are the directions of no instantaneous stretch of a passive line. As
noted above, the behaviour of an inclusion approaches that of an
infinite layer or line as R / N. For directions parallel to the ISA
(j3;4 ¼ �45� for simple shear), the effective strain rate in the
inclusion approaches that of the matrix as R / N and therefore
deff / d0 (Fig. 4). For j1;2 the stretching rate parallel to the axes of
the inclusion is zero, so that _einclusionE / _einclusion12 / (1/deff)_eE as
R / N. Substituting this result into Eq. (43) for the case, as
generally assumed here, that d0 is defined for the same strain rate as
the far-field flow in the matrix, returns the result that deff /ðd0Þni

as R/N. For R¼ 1, _einclusionE ¼ [2/(1þ deff)] _eE. Substituting into Eq.
(43) and rearranging, for _e0E ¼ _eE ¼ 1, gives:

deff
d0

¼
 

2
1þ deff

!1
ni
� 1

; (47)

or

deff

 
2

1þ deff

!1� 1
ni

�d0 ¼ 0: (48)



a b

Fig. 5. Variation of effective viscosity ratio deff as a function of axial ratio R and power-law stress exponent in the inclusion, ni, for a viscosity ratio at reference state d0 ¼ 2 and
a linear viscous matrix undergoing dextral simple shear. a) is for j ¼ 0� or �90� , b) is for j ¼ 45� .
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These equations do not return a simple analytical solution for
deff but they can be readily solved numerically or graphically (e.g.,
by plotting the LHS of Eq. (48) against deff to determine the zero
intercept, see scripts for “Equation_48” in the Supplementary
material). Obviously, for a circular inclusion, the effective strain
rate in the inclusion and thus the effective viscosity ratio cannot
vary with orientation. For a circular power-law viscous inclusion
embedded in a linear viscous matrix with d0 ¼ 2, as in Fig. 4,
deff ¼ 3.37 for ni ¼ 3 (Fig. 4a) and deff ¼ 4.99 for ni ¼ 6 (Fig. 4b).

Three-dimensional plots of the effective viscosity ratio for
dextral simple shear, d0 ¼ 2, R covering the range 1e8, and ni the
range 1e6, are given in Fig. 5a for orientations of the inclusion long
axis at j1;2 ¼ 0� or �90� (i.e. orientations with the maximum
Fig. 6. R-j plot directly comparable to Fig. 3 for dextral transpressive shear with
Wk ¼ 0.8, except that in this case the inclusion has a power-law rheology with ni ¼ 3
and a viscosity ratio at reference state d0 ¼ 3. Note the general form is very similar to
the linear viscous case of Fig. 3, where d ¼ 10. There are two stationary points marked
with red crosses, one with R ¼ 1.56, deff ¼ 8.98, and _einclusionE ¼ 0.193; the other with
R ¼ 2.24, deff ¼ 10.22, and _einclusionE ¼ 0.159. For Wk ¼ 0.8 and ni ¼ 3, a single stationary
point occurs for d0 ¼ 2.8695; for lesser values, there are no stationary points, for larger
values there are always two points (see script “Equation_23_stationary_points” in the
supplementary material). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
effective viscosity ratio; Fig. 4) and in Fig. 5b for j3;4 ¼ �45�

(parallel to the ISA and thus with the maximum particle elongation
rate and minimum effective viscosity ratio; Fig. 4). These plots
emphasize that, for power-law viscous rheology of the inclusion,
the effective viscosity ratio depends strongly on the power-law
stress exponent, the axial ratio and the inclusion orientation.

Despite this marked variation in effective viscosity ratio, the
behaviour of an isolated viscous inclusion is not fundamentally
changed. Comparing the R-j plot of Fig. 6 for a power-law viscous
inclusionwithni¼3 to the analogous linear viscous caseof Fig. 3, it is
apparent that thegeneral form isverysimilar. Themajordifference is
that a power-law viscous inclusion with d0>1 behaves as if it was
markedly more viscous than in the corresponding linear viscous
Fig. 7. R-j plot for a power-law viscous inclusion with viscosity ratio at reference state
d0 ¼ 2, a stress exponent ni ¼ 6, a linear viscous matrix, and dextral simple shear. The
single stationary point has R¼ 1.57, deff¼ 5.48, and _einclusionE ¼ 0.298. The blue trajectories
with arrows are calculated with the semi-analytical solution. The red trajectories
without arrows represent streamlines fitted with MATLAB to the FEM results for dj=deE
and dR=deE values calculated across a grid of discreteR andj values. The correspondence
is close to perfect: where only one colour trajectory is visible, the corresponding
trajectory is either covered or was not calculated. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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case: the example in Fig. 6with ni¼ 3 and a reference state viscosity
ratio of d0 ¼ 3 is comparable to the linear viscous example in Fig. 3
with d ¼ 10. This is reflected in the values associated with the
stationary points in Fig. 6: (1) R ¼ 1.56, deff ¼ 8.98, and (2) R ¼ 2.24,
deff ¼ 10.22. As noted previously, the behaviour of an elliptical
particle in a linear viscousmatrix depends on deff (togetherwith R,j,
and Wk), regardless of whether the actual rheology is linear or
power-law viscous. R-j plots for a linear viscous inclusion and
matrix with each of these values of the viscosity ratio dwould have
stationary points at exactly corresponding positions. In the linear
viscous case, there is obviously only one value of d, irrespective of
axial ratio or orientation, so it is not possible tohave a single linearR-
j plot that can produce the positions of both stationary points in
Fig. 6. However, the difference between deff¼ 8.98 and deff¼ 10.22 is
not large, so that the example in Fig. 3 with d ¼ 10 is very similar to
Fig. 6, even if itmust bedifferent indetail. The important point is that
the similarity is for a significantly higher viscosity ratio than the
reference state viscosity ratio of d0 ¼ 3.

This is again emphasized in Fig. 7, which is an R-j plot for simple
shear (Wk ¼ 1), d0 ¼ 2, and ni ¼ 6. The trajectories indicate that all
inclusions rotate or oscillate, which for linear viscous behaviour
would only occur for d > w3.40. The single stationary point is
developed at R ¼ 1.57, with deff ¼ 5.48. Once again, R-j plots for
linear and power-law inclusions are similar in their general form,
a b

c d

Fig. 8. Comparison of FEM numerical results with the semi-analytical iterative solution for th
for R ¼ 10, 6, 4 and 2 with j values from 0 to 15� , details of which are otherwise not discern
crosses the zero ordinate (no rotation) corresponds to the stationary point in Fig. 7, with a
but with an increased effective viscosity ratio for the power-law
viscous example (if d0 > 1). However, simply taking a higher
value of d and using the linear viscous solution does not capture the
true behaviour, because it cannot reproduce the variation in
effective viscosity ratio as a function of R and j (Figs. 4 and 5).

The iterative semi-analytical approach used above for a power-
law viscous inclusion in a linear viscous matrix is no longer
appropriate when the matrix is also power-law viscous. Here
a personally-developed finite-element code (e.g., Mancktelow,
2008) is employed to study the effects of a power-law viscous
matrix. To produce the R-j plots presented as examples here,
numerical experiments considered a range of R from 1 to 10 and j

from 0� to 90�. Examples were calculated for simple shear (Wk ¼ 1),
with a shear strain rate of 2, corresponding to _ematrix

E ¼ 1. A mixed
pressure-velocity formulation employing a disordered triangular
mesh, with 7-node, higher order interpolation for velocity and 3-
node linear interpolation for pressure (discontinuous from
element to element), was used. The mesh was strongly refined
toward the inclusion and one set of nodes always tracked the
inclusion interface. At each step, a best-fit ellipse was calculated
through the nodal points on the inclusion interface to determine
the axial ratio R and orientation j. For each initial R-j pair, values of
R and j were recorded for ten time (or eE) steps of size 0.001 (in
later models it was found that 3e4 are actually more than
e same model parameters as in Fig. 7. The inset in Fig. 8a is an enlargement of the plots
ible in the main plot. In Fig. 8b, the point where the curve for the rotation rate dj=deE
xial ratio R ¼ 1.57.



Fig. 9. R-j plot determined as streamlines fitting the grid of dj=deE and dR=deE values
calculated by FEM. a) for ni ¼ 3, nm ¼ 3, and d0 ¼ 2; the single stationary point has
R ¼ 1.65; a stationary point with this R value would develop in a linear viscous system
for a viscosity ratio d ¼ 5.09; b) for ni ¼ 6, nm ¼ 3, and d0 ¼ 2; the single stationary
point has R ¼ 1.23; a stationary point with this R value would develop in a linear
viscous system for a viscosity ratio d ¼ 10.58.

a

b

Fig. 10. Shapes of inclusions with an initial circular cross-section (Ri ¼ 1) after a dextral
simple shear strain of g ¼ 6, for a power-law viscous case with ni ¼ 6 and nm ¼ 3
(Mancktelow and Pennacchioni, 2010a, b). In a) the value of the viscosity ratio at
reference state is d0 ¼ 1.5, and the final axial ratio Rf ¼ 5.23, in b) d0 ¼ 0.5, and the final
axial ratio Rf ¼ w102. The axial ratio of a passive circular inclusion would have been
37.97. Note that the shape of the less elongate inclusion in a) is still effectively elliptical,
whereas the strongly elongate inclusion in b) has become slightly sigmoidal.
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sufficient). A smoothed spline curve fitted to these values of R and j

with increasing matrix strain eE allowed the gradients dR=deE and
dj=deE to be determined at the initial value (eE ¼ 0).

As can be seen from Figs. 7 and 8, there is excellent corre-
spondence between the results from the finite-element models and
the theoretical results for power-law inclusions in a linear viscous
matrix. This provides independent control on the accuracy of the
numerical models. In Fig. 8, the normalized rotation rate dj=deE
and elongation rate dR=deE are plotted, as a function of the orien-
tation j and axial ratio R, for a power-law viscous inclusion with
d0 ¼ 2 and ni ¼ 6 in a linear viscous matrix deformed in dextral
simple shear. The solid curves represent the semi-analytical solu-
tion developed above and the crosses are the results from the
corresponding finite-element model. Consistent with the results of
Figs. 6 and 7, it can be seen from Fig. 8a that the power-law viscous
rheology of the inclusion does not affect the general shape of the
rotation-rate curves. However, it does markedly change the
magnitudes compared to linear viscous behaviour. As noted above,
increasingly elongate inclusions always approach the rotational
behaviour of a passive line regardless of rheology and this limit is
clear in Fig. 8a. Orientations corresponding to the maximum and
minimum rotation rates (j1;2 ¼ 0�, �90�) are always ones of no
particle elongation (dR=deE ¼ 0) and the effective viscosity in these
orientations is at a maximum, with deff /ðd0Þni as R / N (see
above). As shown in Fig. 8c, there is consequently a region around
j1;2 (at 0�, �90�) where the elongation rate of the inclusion is low
compared to the linear viscous case, and this effect becomes more
marked as the axial ratio R increases.

Power-law viscous rheology in the matrix further increases the
contrast in effective viscosity between inclusion and matrix. For
a stronger inclusion, the lower strain rate in the inclusion must be
compensated by a higher strain rate in the adjacent matrix. Lower
strain rate in the inclusion results in a higher effective viscosity and
higher strain rate in the matrix in a lower effective viscosity, so the
effective viscosity ratio is further increased relative to a linear
viscous matrix. For a weaker inclusion, the arguments are reversed.
However, the fundamental behaviour, as seen in the R-j plot of
Fig. 9, is again not dramatically changed. Fig. 9a is similar to Fig. 7 so
that, broadly speaking, for d0 ¼ 2, a power-law viscous inclusion
with a stress exponent ni ¼ 3 in a matrix with a stress exponent
nm ¼ 3 behaves like a power-law viscous inclusion with a stress
exponent ni ¼ 6 in a linear viscous matrix. Comparing Fig. 7 with
Fig. 9b, which were determined for similar parameters except that
in Fig. 7 the matrix is linear viscous and in Fig. 9b it is power-law
viscous with nm ¼ 3, emphasizes the observation that a power-
law viscous matrix produces an effectively stiffer behaviour of the
inclusion.

For a power-law viscous matrix, the stress and strain (or strain
rate) in the inclusion are no longer strictly homogeneous, but in
general the heterogeneity induced is small. For stronger inclusions,
the elliptical shape is effectively maintained (Fig. 10a). For weaker
inclusions, the shape is indeedmodified away from a perfect ellipse
as the inclusion becomes highly elongated, producing a more
sigmoidal form (Fig. 10b), but the difference is not dramatic.

6. Discussion

Dispersed inclusions in rocks, such as pebbles in conglomerates
or ooids in limestones, are often used as markers to determine
strain (e.g. Hanna and Fry, 1979; Ramsay and Huber, 1983; Treagus
and Treagus, 2002; and many others). The most widespread
approach based on inclusion shape is the so-called Rf=f method
(e.g., Ramsay, 1967; Dunnet, 1969; Ramsay and Huber, 1983; Lisle,
1985), which accounts for variation in original axial ratio of ellip-
tical particles but assumes passive behaviour. Plots directly
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comparable toRf=f plots can be generated from R-j trajectory plots
such as Figs. 3, 6 and 7 and 9 by determining the final Rf and
orientation jf after a certain time (or imposed matrix strain) of an
inclusion of known initial Ri and ji using standard initial value ODE
methods (e.g., Jiang, 2007b, in press). For a linear viscous matrix
(Fig.11), the stretching and rotation rates are calculated at each step
with Eq.’s (18) and (23), respectively. For a power-law viscous
matrix (Fig. 12), the appropriate rates are interpolated from the
dense grid of values determined from the finite-element models,
based on the same values that were used to generate the trajec-
tories of Fig. 9. Figs. 11 and 12 were both determined for a strain
ellipse in the matrix with axial ratio Rs ¼ 10.
a

b

Fig. 11. Plot of the final axial ratio Rf against final orientation jf, which is equivalent to
an Rf=f plot as used to determine natural finite strain from a population of elliptical
particles measured in 2D. The plots are calculated using the iterative semi-analytical
solution for dextral transpression with Wk ¼ 0.8 (cf. Fig. 6) at a value for the strain
ellipse in the matrix of Rs ¼ 10. The long axis of this strain ellipse makes an angle of
6.1� to the shear direction, as indicated by the vertical green line. Results are presented
for initial axial ratios Ri of 1, 1.1, 1.25, 1.5, 1.75, and 2; crosses are for 5� intervals in
initial orientation from �90 to þ90; dots mark intermediate 0.5� intervals in the same
range. a) reference state viscosity ratio d0 ¼ 3 (i.e. parameters are the same as in Fig. 6);
final axial ratio of an initially circular inclusion is Rf ¼ 1.63; b) the viscosity ratio is
inverted with d0 ¼ 1/3; final axial ratio of an initially circular inclusion is Rf ¼ 19.9. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

b

Fig. 12. Plot of the final axial ratio Rf against final orientation jf, derived from the FEM
numerical experiments for dextral simple shear with d0 ¼ 2 (cf. Fig. 9). Results are
presented for a strain ellipse axial ratio in the matrix of Rs ¼ 10, for which the long axis
of the strain ellipse would make an angle of 17.6� with the shear direction (green
vertical line) and for initial axial ratios Ri of 1.02, 1.1, 1.25, 1.5, 1.75, and 2; crosses are for
5� intervals in initial orientation from �90 to þ90; dots mark intermediate 0.5�

intervals in the same range. a) ni ¼ 3 and nm ¼ 3; final axial ratio of an initially circular
inclusion is Rfw2.15; b) ni¼ 6 and nm¼ 3; final axial ratio of an initially circular inclusion
is Rf w1.45. Missing values in the bottom right of the closed curves represent inclusions
that have passed through or very close to R ¼ 1 during their evolution; the lack of
a defined orientation j and effectively infinite rotation rates of the inclusion axes when
R ¼ 1 makes interpolation through this singularity using the R-j trajectories inaccurate
and these values are omitted from the plot. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig.11 was calculated for the samematrix flow as in Fig. 6, that is
for dextral transpressionwithWk ¼ 0.8. For Rs ¼ 10, the long axis of
the strain ellipse makes an angle of 6.1� with the shear plane, as
indicated by the vertical line. In Fig. 11a, the reference state
viscosity ratio is d0¼ 3 (i.e. parameters are the same as in Fig. 6) and
the final axial ratio of an initially circular inclusion is Rf ¼ 1.63,
whereas in Fig. 11b the viscosity ratio is inverted with d0 ¼ 1/3 and
the final axial ratio of an initially circular inclusion is Rf ¼ 19.9.
Fig. 12 presents results where the matrix is also power-law viscous,
with nm ¼ 3. The results are for dextral simple shear at Rs ¼ 10, for
which the long axis of the strain ellipse makes an angle of 17.6�
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with the shear plane. The parameters of Fig. 12a correspond to
those of Fig. 9a (d0 ¼ 3, ni ¼ 3, nm ¼ 3) and those of Figs. 12b to 9b
(d0 ¼ 3, ni ¼ 6, nm ¼ 3). The plots in Figs. 11 and 12 highlight how
results can be markedly different for only rather small differences
in reference state viscosity ratios between clast and matrix. This is
especially the case for power-law viscous rheology with stress
exponents in the range from 3 to 6, as seems appropriate for natural
rocks. In particular, when both inclusion and matrix have a power-
law rheology, there is a strong positive feedback reflecting the
different effective strain rates in the inclusion and adjacent matrix.
As a result, the final axial ratio Rf of the non-passive clasts, even for
very low reference state viscosity ratios (e.g. 2 in Fig. 12), is very
different from the strain ellipse Rs. In Fig. 12b, Rs ¼ 10 but Rf for an
initially circular inclusion is onlyw1.45; even those inclusions with
an initial axial ratio Ri ¼ 2 never attain values of Rf > w3.5.
The opposite applies for initially slightly weaker inclusions, which
become strongly aligned in the foliation plane and much more
Fig. 13. Plot of the final axial ratio Rf against final orientation jf, using the iterative semi-ana
viscous matrix deforming in dextral simple shear. Results are presented for initial axial ra
orientation from�90 toþ90; dots mark intermediate 0.5� intervals in the same range. a) at g
the horizontal green line), with the long axis of this strain ellipse making an angle q0 ¼ 10.9
vertical scale), with q0 ¼ 5.7� (vertical green line); c) at g ¼ 20, for which Rs ¼ 402 (off the ver
vertical scale), with q0 ¼ 0.57� (vertical green line). Note that even for this enormous Rs, m
range in possible orientations, i.e. �90� � jf � 90� . Elongate particles (Rf >w20) are tightly o
would help define the mylonitic foliation. (For interpretation of the references to colour in
elongate than Rs, as can be seen from Fig. 11b. It follows that clasts
showing only a small range of rheological behaviour differing
slightly from the matrix can show markedly different elongation
behaviour, from nearly equant with a wide range of orientations, to
tightly aligned and strongly stretched. Establishing the matrix Rs
from a population of clasts showing comparable behaviour in
nature is unfortunately not really feasible.

The examples of Figs. 11 and 12 are for moderate strain and
preserve the typical form of an Rf=f plot. However, as can be seen
from Fig. 13 for dextral simple shear, calculated using the semi-
analytical solution with d0 ¼ 3, ni ¼ 3, and nm ¼ 1, this form
breaks down as the shear strain increases. Three points are
important to note from this figure: (1) even for the enormous Rs
associated with a shear strain of g¼ 100 (Fig. 13d), many inclusions
havemaintained a lowaxial ratio (Rf< 3) and the complete range in
possible orientations, i.e. �90� � jf � 90�; (2) very elongate
particles (Rf > w20) are tightly oriented very close to the long axis
lytical solution with d0 ¼ 3, the power-law exponent in the inclusion ni ¼ 3, and a linear
tios Ri of 1, 1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, and 5; crosses are for 5� intervals in initial
¼ 5, for which the axial ratio of the strain ellipse in the matrix is Rs ¼ 27.0 (indicated by

� with the shear direction (vertical green line); b) at g ¼ 10, for which Rs ¼ 102 (off the
tical scale), with q0 ¼ 2.9� (vertical green line); d) at g ¼ 100, for which Rs w 104 (off the
any inclusions have maintained a rather low axial ratio, with Rf < 3, and the complete
riented very close to the long axis of the matrix strain ellipse (and the shear plane) and
this figure legend, the reader is referred to the web version of this article.)
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of the matrix strain ellipse (and the shear plane) and would help
define the mylonitic foliation of such a high strain shear zone; and
(3) for moderate to high shear strains (Fig. 13aec), particles with an
intermediate axial ratio (3w < Rf < w20) have a quasi-stable
orientation with their long axes at a small synthetic angle to the
foliation (i.e., a small negative angle in Fig. 13). Measurements on
natural particle populations also show a transition from an effec-
tively random orientation below Rf < w3 to a strongly preferred
orientation for larger Rf (Passchier, 1987; Pennacchioni et al., 2001;
Mancktelow et al., 2002; Johnson et al., 2009). However, the
(quasi-) stable orientation for intermediate Rf is at a small angle
antithetic to the sense of shear (Pennacchioni et al., 2001;
Mancktelow et al., 2002; ten Grotenhuis et al., 2002; Johnson
et al., 2009), which is the opposite of what is predicted from
Fig. 13. This difference may be explained by one or a combination of
the following effects not considered in Fig. 13: (1) lack of coherence
at the interface between inclusion and matrix (Ildefonse and
Mancktelow, 1993; Pennacchioni et al., 2001; Mancktelow et al.,
2002; Marques and Bose, 2004; Schmid and Podladchikov, 2004,
2005; Marques et al., 2005a; Mulchrone, 2007; Johnson et al.,
2009); (2) limited width shear zone boundaries relative to the
size of the inclusion (Marques and Coelho, 2001; Marques, 2005;
Marques et al., 2005b); (3) strain localization in the matrix (ten
Grotenhuis et al., 2002; Fay et al., 2008); and (4) interaction
between adjacent particles (Ildefonse et al., 1992a, b; Jessell et al.,
2009).

7. Conclusions

Compared to passive or rigid inclusions, deformable inclusions
show a much greater variety in their behaviour. Power-law viscous
rheologyadds to this complexity, because the effective viscositynow
varies with the inclusion orientation and axial ratio. Despite this
added complexity, the overall behaviour is not fundamentally
different. For a power-law inclusion, the overall form of the trajec-
tories in an R-j plot, and therefore the Rf=f plot that can be derived
from it, is similar but not identical to that of a linear viscous system
with a higher viscosity ratio than the viscosity ratio at the reference
state. Comparable R-j plots can be generated by attempting to map
stationary point(s). For a power-law viscous inclusion in a linear
viscous matrix, the effective viscosity deff at the stationary point is
directly analogous to the linear viscous case. However, examples
such as Fig. 6 with two stationary points and two different corre-
sponding values of deff emphasize the fact that such plots may be
similar but cannot be identical. This difference reflects the variation
in deffwithorientationandaxial ratioR in thepower-lawcase,which,
for the specific orientationj1 (dextral shear, orj2 for sinistral shear)
of stationary points, becomesmore apparent as R increases (Fig. 5a),
at least for low to moderate R values. As established above, as R
becomes very large, the value of deff tends asymptotically toward
ðd0Þni for inclusions with orientation j1;2.

Introducing power-law viscous behaviour to the matrix again
does not dramatically change the plots but further increases the
contrast in effective viscosity between inclusion and matrix. For
a stronger inclusion, the strain rate in the inclusion is lower, which
increases the effective viscosity, and the strain rate in the adjacent
matrix must on average be correspondingly higher, which
decreases the effective viscosity, so that the effective viscosity ratio
is increased. The opposite is obviously the case for a weaker
inclusion. R-j plots can still be compared by mapping stationary
points, determining the viscosity ratio that would produce
a stationary point with the same axial ratio in the linear viscous
case. Such plots remain similar in their fundamental characteristics,
but differ in detail from those for a power-law viscous inclusion in
a linear viscous matrix or for linear viscous behaviour of both
inclusion and matrix. For a non-linear viscous matrix, stress and
strain within the inclusion are no longer strictly homogeneous and
the shape therefore does not remain perfectly elliptical. However,
the differences are small except for very large elongations, when
the shape becomes progressively more sigmoidal. For most appli-
cations, considering only low to moderate Rf, this minor hetero-
geneity induced by power-law viscosity in the matrix can be
neglected.

For deformable but not purely passive inclusions, the final axial
ratio Rf cannot be directly related to the strain in the matrix Rs. This
is particularly true for more rotational flows (Wk / 1) and the
difference is increasingly marked for power-law viscous materials,
due to the positive feedback between strain rate and effective
viscosity ratio. The axial ratio Rf is also not directly related to the
internal strain in the inclusion. This is of course true even for
passive inclusions, as implicit in the standard Rf=f technique. Many
of the R-j trajectories for weakly elongate particles in rotational
flows are oscillating, and nearly circular inclusions preserved in
a natural shear zone can have had a long progressive strain history
of extending and shortening that may be reflected in the internal
microstructure, but not in the shape. Even for stationary orienta-
tions, where the orientation and axial ratio do not change, the
internal strain rate is not zero and such inclusions can accumulate
large internal finite strains while maintaining a low axial ratio and
stable orientation.

The common observation in nature of rather equant “porphyr-
oclasts” in highly deformed rocks, especially in shear zones, does
not require nearly rigid behaviour. Even for low viscosity ratios at
the reference state (e.g. d0 ¼ 2e3) and typical power-law stress
exponents on the order of 3e6, as determined in experimental rock
deformation experiments, originally weakly elongate inclusions
(Ri< 2) can readily maintain aweakly elongate shape (Rf< 3 and, in
many cases, Rf < 2) in high strain natural shear zones.
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